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From estimate (23) and Eq.(9) it immediately follows that pl(0)= 0. But then for some 
fairly small number 6>0 the inequality cp((~)+p~(u)e<O, YUE (0, 6]holds. Hence, from inequality 
(22) and the estimate pl(a)<po(s) it follows that for fairly small 6 the following inequality 

holds: 
li,? (0 - 6) + pK* (0 - 6) i CF (0) + Pl (4 0 < 0, y (J E (6, a,) 

This means that q= ~~(~-66) is a non-contact straight line for Eq.(8) when o~(6.a~). But 

then a,>6>0. 
Thus, for the conditions of Theorem 2 to hold, it is sufficient that inequality (21) holds. 
For Lorenz's system, written in the standard form (12), this condition will take the 

form 

A= 231-b 

2 + b (>I+ 1)5;*(r - 1)-r (24) 

It is obvious that condition (24) holds when (rl= 10, b=B/s, r< 2. For large values of olrr 
estimate (24) takes the form r < 'i, (00,)"Z. 
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ON THE SINGULARITY OF THE STRESSES NEAR THE FACE 
IN A PIECEWISE HOMOGENEOUS 

OF A THIN ELASTIC INCLUSION 

PLANE* 

Translated by H.Z. 

D.V. GRILITSKII, A.A. EVTUSHENKO and YU.1. SOROKATYI 

The asymptotic behaviour of normal stresses near the tip of a thin elastic 
inclusion situated near a line weld joining two dissimilar elastic half- 
planes, is studied. It is established that apart from the well-known root- 
type singularity /l/ two additional terms of the asymptotic expression 
exist which must not be neglected. One of them is of the order of unity, 
and the other contains an "imaginary singularity" and makes a singificant 
contribution to the state of stress when the distances between the face of 
the inclusion and the line separating the materials are small. 

1. Normal stresses and their asymptotic behaviour. A thin elastic inclusion 
of normalized length 2 (here and henceforth all distances will be expressed in terms of the 
half-length of the inclusion), is situated in one of the welded isotropichalf-planes possessing 
different elastic characteristics. The distance between the right end of the inclusion and 
the line separating the materials is 6 (Fig.1). A field of tensile stresses o1 and G* exists 
at a sufficient distance from the inclusion, and we have (T* = "I (1 t- x,) p&(1 + e) ~~1, xj = (3 - vj)/(l + 

v1) for the generalized plane stress state, "j= 3-44vj for plane stress, pj is the shear 
modulus and "j is Poisson's ratio of the materials of the half-planes (j= 1.2). The corresponding 
quantities with zero index refer to the material of the inclusion. 
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Fig.1 
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Fig.2 

Taking into account the small thickness of the inclusion, 

the values of the tangential stresses 
we can model it by a jump in 

olxy and normal displacements u1ll on the line v = u: 

Q1 (r.! = -'/z 11 (I), dU,!,/dI = --Ii& (Z), -1 s I ': 1 (I.11 

Assuming that the transverse deformations at the inclusion edges are equal, we obtain the 

following two conditions of interaction of a thin elastic inclusion with the matrix: 

du,,!tiz = k,o, - k,u,,,, u,,,lh = kOaly - k,o, (1.21 

I-+x0 
k,=F, 

3 - %,, 
k, = F 

where ,Y_l is the normal stress at the end X= -1 of the inclusion and h is its relative 
thickness. Conditions (1.2) enable us to obtain solutions of problems for inclusions of 

arbitrary rigidity, ranging from perfect rigid (pu= 05) to perfectly pliable (I("= 0). modelling 
a slit. 

The problem formulated above was solved in /2/ using the integral Mellin transform and 

interaction conditions (1.2). A system of integral equations with singular, Cauchy-type kernel 

is written for the functions of the jump (1.1) sought. A numerical solution of this system in 
the class of functions possessing an integrable singularity at the points z=il. is constructed 

using the method of mechanical quadratures and Gauss-Chebyshev nodes. Knowing the functions 

/I (JI and !* (2) , we obtain the normal stresses Ok,, on the continuation of the axial line of the 
inclusion (-l<z<--1-6~ using the formulas /2/ 

2 

Klj (I, f) = c is, (I f I 7 E) 
, d” 

‘drk( 
t + I - 2 - 26)-’ (/ = 1, 2) 

k=il . 
&, = &/(I L x,). ckP = --a;,z.2~1!( 1 + x1) (k = 0. 1, 2) 

5, = m,$ 3(2- rl)m s, &I = 2 (7 +x1) me. Fz, = 4m8 
&* = In5 l 3rnB, e,, = 12rn& ;** = 4m+, m, = In*, - Y1 
Q = m+ x*. m, = l- m. rnd= 1 + m'i,. m,= m,/m,. ma = m.Jm, 

Integrating along the contour I, in the complex 5= Z-- i!/ plane !Fig.2) and determining 

the residues at the point <=z we obtain, from (1.3), 

11 4) 

The right-hand side of relation (1.4) contains four singularities. Two of them z= +l 

correspond to the usual root-type singularity at the ends of a thin elastic inclusion /'I!. 

The other pair of points z = -1 .-- Ifi and t= -3 - 26, represents the image of the points z= ii 

reflected in the line sei;dra:lng the materials of the half-planes. We shall call them 

"imaginary" , since expression (1.4' holds for z>,--l- 6. however, subsequent numerical analysis 

has shown ihat the imaginary singularity X=-~-S makes a significant contribution to the 

stress o,!, at fairly small values of 3, i.e. when the right tip of the inclusion is s,L.fficientiy 
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near the line separating the materials. 
Using the results of /2/, we obtain the following expressions for the normal stresses in 

the second half-plane: 

-1 j=l 

K (4 = a 
3:-z+Z+26 (2 ix,) t - VIZ+2 +2s 

(L -z)* -ma (t -z2]* 

Using contour integration we can show that 

(1.5) 

Here, as before, C,' is the result of contour integration along a circle of radius R as 
R-.00. We note that solution (1.5) can be used when z<--1-6. 

Let us investigate the asymptotic behaviour of the normal stresses. Using the substitution 
I= -I- E we transfer the origin of coordinates to the tip t= -1 of the inclusion and 
consider the corresponding expressions for % and (T*" when E< 1, remembering that 6 is of 
the order of E. We introduce the stress intensity coefficients in such a manner, that well- 
known results are obtained in the case of a crack or of a perfectly rigid inclusion. 

Such coefficients at the tip +=-l-will be 

f1(- ') 1 - x1 
kl' = - 2 (1 + X,) 

2Pl fz(- 1) 
JZ ' 

V =i- 
6Z 

(00 is the half-length of the inclusion). Then expression (1.4) can be written in the following 
form: 

Relation (1.6) contains, apart from the known root-type singularity, the "imaginary" 
singularity mentioned above, whose contribution may be more significant for small values of 
6, then that of the terms of the order of e-',*. 

TO study the stresses in the second material, we will consider Eq.(1.5) for t >6, 6= O(1) 
Then we have 

2. Analysis of the computational results. Fig.3 shows the behaviour of normal 
stresses o,,(j= i,2) near the tip of the inclusion situated near the line separating the 
materials of the half-planes made of aluminium and an epoxy resin (,n = 23.08; o, = 0.35; ft = 0.3) 
for 6 = 0.0005. The relative rigidity of the inclusion li= pO:pl is equal to lo-' (the solid lines), 
10 (the dashed lines) and lo3 (the dot-dash lines). The dimensionless width of the inclusion 
is h = 0.01. The curves marked I,B,Y correspond to three different computational schemes: 1 
depicts the exact solution obtained using Eq.(l.l) and the results of /2/, 2 depicts the 
solution obtained using theusualasymptotic representation taking into account only the singular- 
ity of the type ~~'2~ when the stress intensity coefficients are known, and 3 depicts the 
solution obtained with help of the formulas (1.6), (1.7) with C,= C'= 0 and the same values 
of the stress intensity coefficients. 

In all cases, comparison with the exact solution (curves 1) shows that the new asymptotic 
solution (curves 3) yields a correct qualitative pattern of the distribution of normal stresses 
and differs only by a constant, which is obviously caused by the choice of C,=C,'=O. Curves 
2 differ noticeably from the exact solution both qualitatively and quantitatively (the 
disappearance of theminimumfor more pliable inclusions k<l, and the change of sign for more 
rigid inclusions k > 1). 



Fig.4 gives the results of calculations for an inclusion situated ina material with 

greater shear modulus (m = 0.0433; p1 = 0.3; ~2 = 0.3% k = 0.1). In this case the normal stresses 63 
are, as expected, vanishingly small and can be neglected. 

Let us indicate how the results obtained can be used in practice. When the stress 
intensity coefficients are obtained from interferometric data, the stresses <T near the tip 
of an acute-angled defect can be written in the form /3/ 

where A, (~1 = 0. 1. . A).C are unknown constants and A, = (k, ‘$ kI’)l/ho!9, For small distances E < t0 
we can put .\ = 0, c = (1. However, as a rule, a zone of premature disintegration forms in this 
region, i.e. the stresses relax, the material becomes brittle and behaves non-linearly. 

Moreover, optical caustic curves appear which obscure the region of measurements. In distant 
regions E>E, the choice of N becomes difficult, and some of the asymptotic terms included 
may be smaller than the accuracy of the measurements. The two-parameter representations 
(s = 0, ~~0) are used in most cases. The region of reliability Q<E<', is chosen by 
establishing the correlations between the measureable quantities (J and E-". 

Fig.3 Fig.4 

The above investigations show that near the boundary separating the materials we must put 

c‘ = A - E/V?‘-_ , and this improves the quality of the asymptotic expression (2.1) considerabiy. 

The parameters J,.A, B are found from the known values of 0 at a sufficient number of points 

obtained from the experimental data or from numerical solutions. 
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